Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474389

RESUMO

Atopic dermatitis (AD) is an inflammatory skin condition that frequently develops before the onset of allergic rhinitis or asthma. More than 10% of children are affected by this serious skin condition, which is painful for the sufferers. Recent research has connected the environment, genetics, the skin barrier, drugs, psychological factors, and the immune system to the onset and severity of AD. The causes and consequences of AD and its cellular and molecular origins are reviewed in this paper. The exploration of interleukins and their influence on the immunological pathway in AD has been facilitated by using relevant biomarkers in clinical trials. This approach enables the identification of novel therapeutic modalities, fostering the potential for targeted translational research within the realm of personalized medicine. This review focuses on AD's pathophysiology and the ever-changing therapeutic landscape. Beyond the plethora of biologic medications in various stages of approval or development, a range of non-biologic targeted therapies, specifically small molecules, have emerged. These include Janus kinase (JAK) inhibitors like Baricitinib, Upadacitinib, and Abrocitinib, thus expanding the spectrum of therapeutic options. This review also addresses the latest clinical efficacy data and elucidates the scientific rationale behind each targeted treatment for atopic dermatitis.


Assuntos
Asma , Dermatite Atópica , Rinite Alérgica , Criança , Humanos , Pele , Medicina de Precisão
2.
Biomed Pharmacother ; 173: 116294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401516

RESUMO

Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.


Assuntos
Carcinoma , Neoplasias Pulmonares , Nanopartículas Metálicas , Nanopartículas , Plantas Medicinais , Humanos , Plantas Medicinais/metabolismo , Nanopartículas Metálicas/química , Neoplasias Pulmonares/tratamento farmacológico , Pulmão , Química Verde , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química
3.
Biomolecules ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254673

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Movimento , Mutação , Fatores de Risco
4.
Eur J Pharm Sci ; 193: 106642, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977235

RESUMO

This study developed a new dual delivery system of naringenin (NRG), a polyphenol, and doxofylline (DOX), a xanthine derivative, as an inhaled microsphere system. In this system, NRG has been first loaded into glyceryl tristearate-based solid lipid nanoparticles (NRG SLN), which were further loaded with DOX into swellable chitosan-tripolyphosphate-based microspheres (NRG SLN DOX sMS). The system was characterized based on particle size, PDI, zeta potential, surface morphology (SEM, AFM, and TEM), solid-state and chemical properties (XRD, IR, and NMR), aerodynamic parameters, drug loading, entrapment efficiency and in vitro drug release study. The optimized NRG SLN DOX sMS exhibited particle size, zeta potential, and PDI of 2.1 µm, 31.2 mV, and 0.310, respectively; a drug entrapment efficiency > 79 %; a drug loading efficiency > 13 %; cumulative drug releases of about 78 % for DOX and 72 % for NRG after 6 and 12 h, respectively; good swelling and desirable aerodynamic properties. In addition, in vivo studies conducted in mice, a murine model of asthma showed significant reductions in serum bicarbonate and eosinophil counts and improvement in respiratory flow rate, tidal volume, and bronchial wall lining compared with the asthmatic control group. Overall, this novel inhalable dual-delivery system may represent a good alternative for the effective treatment of asthma.


Assuntos
Asma , Flavanonas , Lipossomos , Nanopartículas , Teofilina/análogos & derivados , Camundongos , Animais , Microesferas , Nanopartículas/química , Asma/tratamento farmacológico , Tamanho da Partícula , Portadores de Fármacos/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-37694776

RESUMO

Thiazines are a sizable class of organic heterocycles that are notable for their skeletal versatility and relative chemical simplicity, making them among the most flexible sources of biologically active compounds. The term "green synthesis" refers to implementing energy-efficient procedures for the nature-friendly production of materials and chemicals using green solvents, catalysts, and suitable reaction conditions.Considering the importance of green chemistry and the outstanding therapeutic profile of thiazines, the present work was designed to review the recent advances in green chemistry-based synthetic strategies of thiazine and its derivatives. The green synthetic approaches, including microwave-assisted, ultrasound-assisted, and various other synthetic methods for thiazine and its derivatives, were discussed and generalized. In addition, applications of thiazine and its derivatives in pharmaceutical sciences were explained with examples of marketed drugs.The discussed sustainable synthetic methods for thiazines and their derivatives could be useful in developing other medicinally important lead molecules. They could also aid in developing new synthetic schemes and apparatuses that may simplify chemical manufacturing processes and enable novel reactions with minimal by-products while questing for optimal, green solvents. This review can help anyone interested in this fascinating class of heterocycles to make decisions about selecting targets and tasks for future research.

6.
Mol Neurobiol ; 60(9): 5378-5394, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314657

RESUMO

This study aimed to assess the efficacy of ethanolic extract of Solanum torvum L. fruit (EESTF) containing solasodine in treating chronic constriction injury (CCI)-induced neuropathic pain in rats. Three-dimensional (3D) simulation studies of solasodine binding were conducted on the TRPV1 receptor, IL-6, and TNF-α structures. For in vivo justification, an assessment of behavioral, biochemical, and histological changes was designed after a CCI-induced neuropathic pain model in rats. On days 7, 14, and 21, CCI significantly increased mechanical, thermal, and cold allodynia while producing a functional deficit. IL-6, TNF-α, TBARS, and MPO levels also increased. SOD levels of catalase and reduced glutathione levels also decreased. Administration of pregabalin (30 mg/kg, oral), solasodine (25 mg/kg, oral), and EESTF (100 and 300 mg/kg, oral) significantly reduced CCI-induced behavioral and biochemical changes (P < 0.05). The protective nature of EESTF was also confirmed by histological analysis. Capsaicin, a TRPV1 receptor agonist, abolished the antinociceptive effects of EESTF when used previously. From the observations of the docking studies, solasodine acted as an antagonist at TRPV1, whereas the docking scores of solasodine against TNF-α and IL-6 were reported to be -11.2 and -6.04 kcal/mol, respectively. The attenuating effect of EESTF might be related to its antagonistic effects on TRPV1, suppression of cytokines, and anti-inflammatory and antioxidant properties.


Assuntos
Citocinas , Neuralgia , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Frutas/metabolismo , Constrição , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo
7.
Biomedicines ; 11(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37239068

RESUMO

Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-ß (Aß)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aß and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aß- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.

8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768420

RESUMO

Moringa oleifera, also known as the "tree of life" or "miracle tree," is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.


Assuntos
Moringa oleifera , Moringa oleifera/química , Medicina Tradicional , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...